
MCR101 SCR

SENSITIVE GATE SILICON CONTROLLED RECTIFIERS REVERSE BLOCKING **THYRISTORS**

DESCRIPTION

PNPN devices designed for high volume, line-powered consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thrusters, and sensing and detection circuits. Supplied in an inexpensive plastic TO-92 package which is readily adaptable for use in automatic insertion equipment.


FEATURES

- *Sensitive Gate Allows Triggering by Micro Controllers and other Logic Circuits
- *Blocking Voltage to 600V
- *On-State Current Rating of 0.8A RMS at 80°C
- *High Surge Current Capability 10A
- *Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- *Immunity to dV/dt 20V/µsec Minimum at 110°C
- *Glass-Passivated Surface for Reliability and Uniformity

ORDERING INFORMATION

Ordering Number			Daakaga	Pin Assignment			Packing
Normal	Lead Free Plating	Halogen Free	Package	1	2	3	Packing
MCR101-x-xx-T92-B	MCR101L-x-xx-T92-B	MCR101G-x-xx-T92-B	TO-92	G	Α	K	Tape Box
MCR101-x-xx-T92-K	MCR101L-x-xx-T92-K	MCR101G-x-xx-T92-K	TO-92	G	Α	K	Bulk

Note: Pin Assignment: G: Gate A: Anode K: Cathode

www.unisonic.com.tw 1 of 5 QW-R301-009,D

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT	
Peak Repetitive Off-State Voltage(note)	MCR101-4		200	
(T _J =-40 to 110°C, Sine Wave, 50 to 60Hz; Gate	MCR101-6	V_{DRM}, V_{RRM}	400	V
Open)	MCR101-8		600	
On-Sate RMS Current (Tc=80°C) 180° Condition	Angles	I _{T(RMS)}	0.8	Α
Peak Non-Repetitive Surge Current			40	^
(1/2 cycle, Sine Wave, 60Hz, T _J =25°C)	I _{TSM}	10	Α	
Circuit Fusing Considerations (t=8.3 ms)	l ² t	0.415	A^2s	
Forward Peak Gate Power (T _A =25°C, Pulse Width	P_GM	0.1	W	
Forward Average Gate Power (T _A =25°C, t=8.3ms	$P_{G(AV)}$	0.1	W	
Peak Gate Current – Forward (T _A =25°C, Pulse W	I _{GM}	1	Α	
Peak Gate Voltage – Reverse (T _A =25°C, Pulse W	V_{GRM}	5	V	
Operating Junction Temperature @ Rated V _{RRM} a	T_J	-40 ~ +110	°C	
Storage Temperature	T _{STG}	-40 ~ +150	°C	

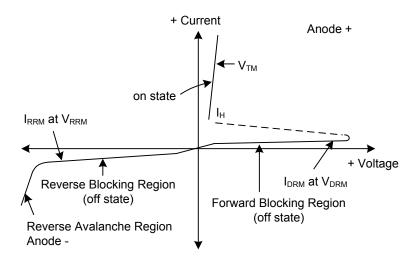
Note: V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Junction to Ambient	θ_{JA}	200	°C/W	
Junction to Case	θ_{JC}	75	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise stated)

		I		MIN			
PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS							
Peak Forward or Reverse	Tc=25°C	<u> </u>	I_{DRM} , I_{RRM} V_D =Rated V_{DRM} and V_{RRM} ; R_{GK} =1k Ω			10	
Blocking Current	Tc=125°C	IDRM, IRRM				100	μΑ
ON CHARACTERISTICS							
Peak Forward On-State Voltage (Note1) V _{TM}			I _{TM} =1A Peak @ T _A =25°C	1A Peak @ T _A =25°C		1.7	V
Gate Trigger Current (Continuous dc)(note2)		I _{GT}	V _{AK} =7Vdc, R _L =100Ω, T _C =25°C		40	200	μА
Holding Current (note 3)	Tc=25 °C	I _H	\/ -7\/da initiation a compant 2000 A		0.5	5	m A
	Tc=-40 °C		V _{AK} =7Vdc, initiating current=20mA			10	mA
Latch Current	Tc=25°C		\/ =7\/ a=200\		0.6	10	mΛ
	Tc=-40 °C	IL.	V _{AK} =7V, Ig=200μA			15	mA
Gate Trigger Current	Tc=25 °C	\/	V _{AK} =7Vdc, R _L =100Ω		0.62	0.8	V
(continuous dc) (Note 2)	Tc=-40 °C	$V_{\rm GT}$				1.2	V
DYNAMIC CHARACTERISTI	CS			•		•	
Critical Rate of Rise of Off-State Voltage		dV/dt	V_D =Rated V_{DRM} , Exponential Waveform, R_{GK} =1000 Ω , T_J =110°C		35		V/μs
		a v/at			- 30		ν,μο
Critical Rate of Rise of On-State Current		dı/dt	I _{PK} =20A, Pw=10μsec			50	Λ/ς
			diG/dt=1A/μsec, Igt=20mA			50	A/μs


Notes: 1. Indicates Pulse Test Width≤1.0ms, duty cycle ≤1%

- 2. $R_{\text{GK}}\text{=}1000\Omega$ included in measurement.
- 3. Does not include R_{GK} in measurement.

MCR101 scr

■ VOLTAGE CURRENT CHARACTERISTIC OF SCR

SYMBOL	PARAMETER
V_{DRM}	Peak Repetitive Off Stat Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
I _H	Holding Current

■ CLASSIFICATION OF I_{GT}

RANK	В	С	AA	AB	AC	AD
RANGE	48~105μA	95~200μΑ	8~16μA	14~21μA	19~25μA	23~52μA

MCR101 scr

■ TYPICAL CHARACTERISTICS

Figure 1. Typical Gate Trigger Current versus Junction Temperature

100
90
40
30
20
10
-40 -25 -10 5 20 25 50 65 80 95 110
Junction Temperature, T_J (°C)

Figure 2. Typical Gate Trigger Voltage versus Junction Temperature

1.0

(\$\frac{1}{2}\text{O}

Figure 3. Typical Holding Current versus Junction Temperature

1000

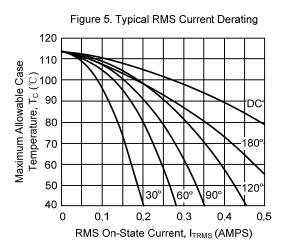
(V 1)

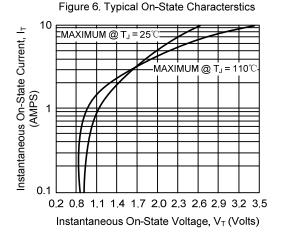
100

-40 -25 -10 5 20 25 50 65 80 95 110

Junction Temperature, T_J (°C)

Figure 4. Typical Latching Current versus Junction Temperature


1000


(V 1)

100

-40 -25 -10 5 20 25 50 65 80 95 110

Junction Temperature, T_J (°C)

MCR101 scr

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.